

Dong Du, Xu Lu, Erhu Feng, Bicheng Yang, Yubin Xia, Haibo Chen IPADS, Shanghai Jiao Tong University

What's Enclaves?

Hardware-assisted Trusted Execution Environment

Why Enclave for RISC-V?

Lessons learned:

Security is a necessary processor need

User needs:

Users will run sensitive code/data in RISC-V

Why Another Enclave?

Shared Enclave Architecture: A single HWassisted protection zone for multiple enclaves

- Pros: low communication latency (intra-zone)
- Cons: higher TCB •

HW/Secure Monitor

Dedicated Enclave

SEV-ES SGX Haven HexFive Graphene-SGX Keystone SEV TIMBER-V Sanct Sanctum

Dedicated Enclave Architecture: A single HWassisted protection zone for a single enclave

- **Pros:** small TCB \rightarrow higher security-assurance
- Cons: long communication latency (inter-zone) & non-scalable

Why Another Enclave?

En

SGX Intel Nication boot number & gran (PT/Cache) integrity SGX Intel Slow X Unlimited 256MB X Small √	Systems		Performance				Security			
	Туре	Name	Arch						тсв	Mem enc./ integrity
Howen Intel Class V Halinsted OCOMD V Lange J		SGX	Intel	Slow	X	Unlimited	256MB	X	Small	\checkmark
naveni intei Siow X Unimited 256MB X Large V		Haven	Intel	Slow	X	Unlimited	256MB	X	Large	\checkmark
Graphene Intel Slow X Unlimited 256MB X Large √		Graphene	Intel	Slow	X	Unlimited	256MB	X	Large	\checkmark

Existing enclave systems can not achieve security and performance simultaneously.

Shared	TrustZone	ARM	Fast	X	Unlimited	All	Partial	Large	X
	OP-TEE	ARM	Fast	X	Unlimited	All	Partial	Large	X
Enclave	Komodo	ARM	Fast	\checkmark	Unlimited	All	Partial	Medi.	X
	Sanctuary	ARM	Fast	\checkmark	Unlimited	All	Partial	Large	X
heavy.LIG HT	Penglai	RISC-V	Fast	\checkmark	Unlimited	All	\checkmark	Medi.	X

- SW-HW Co-design Trusted Execution Environment (TEE)
 - Based on RISC-V ISA
 - Can run on any RISC-V core that supports Privileged ISA v1.10
 - IoT and Cloud
- Trusted Code Base
 - RISC-V core (PMP/sPMP) + Verifiable security monitor (M-mode privilege) + TEEOS
- Secure Assurance
 - Strong isolation between enclave and other application or OS
 - Protect against a malicious or compromised OS
 - Secure boot and remote attestation for chain of trust
 - High performance and scalability

Penglai with heavy.LIGHT Architecture

heavy.LIGHT architecture

- LIGHT Zone: A dedicated HWisolated box for a single enclave
- heavy Zone: Multiple-Enclaves isolated through TEEOS

- **TEEOS:** Leverage s-mode for enclave isolation (sPMP and PMP)
 - Fast cross-enclave communication (IPC)
 - Flexible resource management
 - Fast startup
 - Scalable instances

heavy.LIGHT Architecture

• Security monitor:

- A small software running on M-mode
- Enclave measurement and attestation
- Manage enclave and provide isolation via physical memory isolation property

Physical Memory Isolation Property

- Restrict physical memory access of S- or U-mode software
- Dynamically configurable by security monitor

Hardware Requirement

- RV32 or RV64
- All of the three modes (M/S/U)
- Support RISC-V priv. ISA v1.10
 - need sPMP or PT support for performance
- Larger, tamper-proof boot ROM (~1MB)
 - Trusted bootloader should be added to initialize the system
- Physical memory isolation support
 - New hardware property for memory isolation
- IOPMP extension
 - Defend malicious I/O access

SPMP (S-mode PMP)

- For IoT devices (MMU-less)
 - it is desirable to enable S-mode OS to limit the physical addresses accessible by U-mode software

SPMP (S-mode PMP)

• S-mode virtualization for scalable enclaves

- sPMP entries
 - 8-bit configuration register
 - XLEN-bit address register

0

address[33:2] (WARL)

address register (RV32)

- sPMP entries
 - 8-bit configuration register
 - XLEN-bit address register

31 24	23 16	15 8	7	
spmp3cfg	spmp2cfg	spmp1cfg	spmp0cfg	spmpcfg0
31 24	23 16	15 8	7 0	
spmp7cfg	spmp6cfg	spmp5cfg	spmp4cfg	spmpcfg1
31 24	23 16	15 8	7 0	
spmp11cfg	spmp10cfg	spmp9cfg	spmp8cfg	spmpcfg2
31 24	23 16	15 8	7 0	
spmp15cfg	spmp14cfg	spmp13cfg	spmp12cfg	spmpcfg3

configuration register (RV32)

- sPMP entries
 - 8-bit configuration register
 - XLEN-bit address register

- Address matching
 - Same as PMP
- Locking and privilege mode
 - The Lock bit indicates: the sPMP is locked to S-mode
- Priority and Matching Logic
 - The lowest-numbered sPMP entry
 - Failed accesses generate a page fault exception

Refer our proposal in **RISC-V/TEE** group for details !

SMAP and SMEP

- SMAP (Supervisor Memory Access Prevention)
 - leverage the SUM bit in the status register
 - SUM=0:
 - S-mode memory accesses to memory for U-mode (U=1) will fault
 - SUM=1:
 - these accesses are permitted
- SMEP (Supervisor Memory Execution Prevention)
 - Do not allow the S-mode to execute codes in physical memory that are for U-mode (U=1)
- Violations will trigger page faults

Chain of Trust: (1) Secure Boot

- The manufacturer provisions:
 - device key pair {SK_{DEV}, PK_{DEV}}
 - endorses the certificate
- During CPU resets: load bootloader from boot ROM and execute it
- The bootloader measures and signs the security monitor
- The secure monitor measures and signs the TEEOS
- The user can remotely attest the security monitor and TEEOS by
 - trusting the manufacturer's certificate
 - comparing the measurement
 - and verifying the signature with $\mathsf{PK}_{\mathsf{DEV}}$

Chain of Trust: (2) Remote Attestation for light Zone

- (1) The bootloader provisions the attestation key pair $\{SK_{SM}, PK_{SM}\}$
- (2) The user uploads an executable to the system
- (3) The user asks SM to create an enclave and initialize it with the executable
- (4) The user asks SM to measure the initial state of the enclave
- (5) The SM measures the enclave, and signs it with the attestation private key
- The user can remotely attest the enclave by
 - comparing the measurement
 - and verifying it with PK_SM

Chain of Trust: (3) Remote Attestation for HEAVY Zone

- Same (1)-(4)
- (5) The SM measures the enclave through (verified) TEEOS, and signs it with the attestation private key
- The user can remotely attest the enclave by
 - comparing the measurement
 - and verifying it with PK_SM

Layered Memory Isolation

- HEAVY.light provides a strong and flexible physical memory isolation
 - RISC-V Physical Memory Protection (PMP)
 - PT / S-mode PMP* for TEEOS memory isolation

* : need HW extensions in HEAVY.light enclave design

Monitor starts

Untrusted App starts

Platform

- N200 from NUCELI (芯来)
- RV32 with sPMP support
- No paging

Enclave executes

ይ	芯来科技 NUCLEI	

N200

- Enclaves chain
 - Up to 100 enclaves

ILog] Blackwater init start	
In the ret_to_payload, the payload addr is Untrusted is invoking enclave	s 0x80006000
EnclaveLid:0」 handle request	
<pre>Enclave[id:0] starts to invoke Enclave[id</pre>	:1]
<pre>Enclave[id:1] handle request</pre>	
Enclave[id:1] starts to invoke Enclave[id	:2]
<pre>Enclave[id:2] handle request</pre>	
Enclave[id:2] starts to invoke Enclave[id	:3]
Enclave[id:3] handle request	
Enclave[id:3] starts to invoke Enclave[id	:47
Enclave[id:4] handle request	
Enclave[id:4] starts to invoke Enclave[id	:5]
<pre>Enclave[id:5] handle request</pre>	
<pre>Enclave[id:5] starts to invoke Enclave[id</pre>	:6]
Enclave[id:97] handle request	
Enclave[id:97] starts to invoke Enc	avo [id·08]
Enclave[id:98] handle request	
Enclave[id:98] starts to invoke Enc	clave[id:99]
Enclave[id:99] handle request	
Enclave[id:99] starts to invoke Enc	laveFid:100
/es Enclave[id:100] handle request	

Conclusion

Light zone

Sensitive

code/data

Secure monitor

Enclave

Host App

OS

Non-sensitive

code/data

Memory allocation

Background

- Existing enclave systems is either *dedicated enclave* or *shared enclave*
- Cannot achieve both security & performance simultaneously
- Penglai-Enclave is based on heavy.LIGHT

architecture

- Using light-zone and heavy-zone to achieve both performance and security
- TEEOS for scalability
- Cases
 - siFive U500 (Xilinx VC707)
 - Nuclei N200

Heavy zone

TEEOS

Enclave-n

User

Supervisor

Machine

