
A Formal Methodology
for Verifying RISC-V Cores

The First China RISC-V Forum

Chen Wei Wei, 13.11.2019

| © 2019 OneSpin SolutionsPage 2

Leading-Edge Technology
Targeting critical hardware verification challenges

Functional Correctness
Rigorous coverage-driven functional

verification from block to chip,

leveraging formal technology

Safety
Safety analysis and higher diagnostic

coverage to meet strict certification

requirements

Trust and Security
Automated detection of RTL Trojans

and hardware vulnerabilities to

adversary attacks

Design Exploration

Protocol Violations

Integrate Formal/Sim Coverage

End-to-End User Assertions

HLS/SystemC Verification

Synthesis/P&R Errors

FMEDA of Complex SoCs

Failure Mode Distribution

Avoid Excessive Fault Simulations

Measure Diagnostic Coverage

ISO 26262 Compliance

Tool Qualification

Denial of Service

Data Leakage

Privileges Escalation

Data Integrity/Confidentiality

Hardware Backdoors

Hardware Trojans

OneSpin 360® Formal Platform

Heterogeneous Computing

OneSpin Solutions and Services

Thorough verification of

complex SoC platforms

used for 5G wireless, IoT,

and AI applications

Automotive and Industrial
Systematic bug elimination

and metrics on proper

handling of random errors in

the field

RISC-V
Efficient and complete

verification, including

custom extensions.

Compliance to ISA.

RISC-V

| © 2019 OneSpin SolutionsPage 3

RISC-V Verification Challenges
Does the RTL precisely implement the RISC-V ISA spec?

RISC-V processor cores are hard to verify

• Complex µ-architectures to achieve PPA targets

• Many configurations of implementation

Inadequate Methods

• Months of verification setup, weeks of

simulation for each instance

• Bounded formal proofs, hard to setup&reuse

• Bugs and additional logic remain undetected

Alternative: Formal methodology

RISC-V cores become very popular

• Use in critical application domains including

mil/aero, automotive, IoT, industry

• Trust in IP implementation is critical for

business and mission success

• Commercial IP vendors, including internal IP

groups must perform extensive verification,

demonstrate the results to their clients

• Open source IP users must perform own

verification, especially when adding custom

extensions

Verification?
RISC-V Core RTL

Implementation

| © 2019 OneSpin SolutionsPage 4

RISC-V Formal Methodology
Automates and Accelerates Verification

OneSpin RISC-V Formal Verification App

• Completely verifies RISC-V Core RTL

Implementations with full proofs, no

bugs escape

• Guarantees full compliance with ISA and

privileged ISA

• Takes less than a week to setup, runs

only 2 hours on complete core

• Identifies unspecified instructions/CSRs

• Proven on 32-Bit and 64-Bit

commercial and open source

implementations with single issue

pipeline, out-of-order completion, and

branch prediction

Re-Usable RISC-V VIP
ISA Formalization in SV

RISC-V Modelling Layer
Implementation Specific

Properties

RISC-V Core RTL

Design Info Extract

IP Configuration:
Architecture: RV64I, Exts: M, F

Parameters: Pipeline depth 6,

I/O-Mapping, Register

Mapping, User Extensions

OneSpin 360 Formal

Verification Engine

Verification Flow with OneSpin RISC-V Formal App

| © 2019 OneSpin SolutionsPage 5

RISC-V ISA
Excerpt of configuration choices

RV32I

RV64I

A(tomic

Instructions)

M(ultiplication

and division)

F(loating point

single)

D(ouble

floating point)

C(ompressed)

U(ser mode)

sv32 virtual

memory

Counters
sv48 virtual

memory

sv39 virtual

memory

PMP memory

protection

V(ector

operations)

B(it

manipulation)

Custom

registers

RV128I

Base Released extension Privileged spec Draft extensions Full custom

Huge amount of standardized

configuration choices

Custom

instructions

Custom

exceptions

| © 2019 OneSpin SolutionsPage 6

RISC-V Parameterization

Sample configuration:

• RV64IMA

• Page-based 39-bit virtual memory system

• User mode

• No counters

• 8 PMPs

• Debug mode according to debug spec

• Initial PC 0x10040

SVA instantiation parameter map:

#(.MISA('{MXL:xl_64,

I_BASE_ISA: 1’h1,

S_MODE: 1’h1, U_MODE: 1’h1,

A_EXT: 1’h1, M_EXT: 1’h1,

default: 1'b0}),

.SATP_MODE(sv39),

.DBG_SUPPORT(xdbgs_std),

.PMP_SUPPORT(1),

.IMPLEMENTED_PMPS(8),

.IMPLEMENTED_COUNTERS(0),

.RESET_PC(32’h10040))

green: provided by App

blue : provided by user

| © 2019 OneSpin SolutionsPage 7

RISC-V ISA Description

Architecture registers

Instruction

Exception

op_a = XR[RS1]

addr = op_a + imm

result = M[addr]

XR[RD] = result

LW

RS1imm 0000011010

7 615 1420 19 031

RD

12 11

Defines

architecture

registers

Defines update of

architecture

registers &

memory requests

XR

FR PC

CSR

Architecture registers

XR

FR PC

CSR

| © 2019 OneSpin SolutionsPage 8

Formalized User-Level ISA

• Captures effect of instructions on architecture state and output to data memory

• Formalized in SystemVerilog Assertions(SVA)

32'bXXXXXXXXXXXXXXXXX010XXXXX0000011:

decode.instr = LW;

decode.RS1.valid = 1’b1;

decode.RD.valid = 1’b1;

decode.imm = $signed(iw[31:20]);

decode.mem = 1’b1;

…

ISA formalization

excerpt for LW

| © 2019 OneSpin SolutionsPage 9

Verification of RISC-V Implementation

• Instructions executed as specified in ISA

• Example: Operational SVA for LW instruction fully verifying
forwarding to decode/execute and full register update

• Several opcodes can be handled in same property

• Exceptions, bubbles, and replay handled in separate properties

t##0 Ready2Execute and

t##0 set_freeze(dec,decode(ibuf_io_inst_0_bits_raw,RF)) and

t##0 ibuf_io_inst_0_valid && dec.instr == LW &&

!dec.xcpt.valid && !ctrl_stalld

implies

t##1 Ready2Execute and

pipe_result(dec,RF,result) and

pipe_dmem_out(dec);

Use ISA

formalization

Non-exceptional

execution of LW

Check expected register

file and DCache request

from ISA

Use ISA

formalization

Overlapping

instructions

| © 2019 OneSpin SolutionsPage 10

Operational SVAssertion

• Formally captures single DUV operation

• Suppose part describes cause – when does assertion apply

• Prove part specifies effect - intended behavior in that case

Operation

suppose

prove

t##0 t##1

start

state

outputs

inputs

end

state

Effect

Cause

| © 2019 OneSpin SolutionsPage 11

Selection of Issues Found in Rocket Core

• DIV (divide) result not written to register file (#1752)

• Issue confirmed by Rocket Core developers and fixed in RTL

• Illegal opcodes replayed (#1861)

• Illegal opcodes or fetch side exceptions can cause spurious memory access

• Core contains undocumented non-standard instruction (#1868)

• Issue confirmed by Rocket Core developers and fixed in RTL (misa.X bit set)

• Core contains undocumented non-standard CSR (#1949)

• CSR 0x7c1 reads back as 0

• Return from debug mode is executable outside of debug mode (#2022)

• Issue confirmed by Rocket Core developers and fixed in RTL

| © 2019 OneSpin SolutionsPage 12

Selection of Issues Found in RI5CY Core

• Fetch side exception influences execution of earlier instruction (#132)

• Earlier instruction executes as if exception of later instruction had already been taken

• Missing illegal exceptions (#136, #137, #170)

• Several scenarios specified as raising illegal exceptions do not

• Wrong physical memory protection (PMP) computation (#159)

• PMPs beyond first match are looked up to check for legal access

• Wrong rounding mode for F extension (#169, #174)

• Updates of rounding mode register not visible for next instruction

• Update of interrupt enable by exception violates spec (#182)

• Applies both to entering and return from exception

| © 2019 OneSpin SolutionsPage 13

Summary

• RISC-V formal verification methodology proves DUT against RISC-V spec

• Compliance without hidden additional instructions or registers

• Finds ISA violations, other functional correctness bugs, and security and trust issues

• App setup in 3 steps

• Configure app to implemented RISC-V ISA extensions

• Automatic extraction of architecture registers from DUT

• Adaption of templates to concrete pipeline implementation and cache interfaces

• Developed on RocketCore standard configuration

• Exhaustive proofs for core achieved for all instructions on 64-bit pipeline with out-of-
order completion in 2-hour sequential runtimes

• Also run on RI5CY 32-bit core

• 13 issues (so far) reported to core development team

| © 2019 OneSpin SolutionsPage 14

OneSpin for IC Integrity
Visit https://www.onespin.com

OneSpin provides certified IC Integrity Verification Solutions

to develop reliable, safe, secure, and trusted integrated circuits.

Thank

You!

Functional

Correctness
Safety

Trust and

Security

