A High-Performance and Energy-Efficient Accelerator with the RISC-V Core for Optimization in Visual SLAM System

Speaker:刘檬 Dr. Meng Liu

Inventors: 李任伟,吴军宁,刘檬,周沈刚,陈祖玎

Organization : Institute of Automation, Chinese Academy of Sciences

Beijing Haawking Technology Co., Ltd

单位: 中科院自动化所; 北京中科吴芯科技有限公司

Dyson's \$1,200 robotic vacuum is expensive, but also the best

Simultaneous Localization and Mapping

- Estimate the pose of a robot and the map of the environment at the same time, this means:
 - Map the location, creating a 3D virtual map
 - Locate itself inside the map
 - In sum, it is a *hot topic*.

SLAM

≻Visual SLAM (vSLAM)

- Computer Vision
- Sensor is camera
- One of the most *challenging* open problems

Key Applications of Visual SLAM

- Low-cost robotics (e.g. a mobile robot with a cheap camera)
- Agile robotics (e.g. drones)
- Smartphones
- Wearables
- AR/VR: inside-out tracking, gaming

The Need for Efficiency in Advanced Real-Time Vision

 We need 1000x power efficiency for truly capable always-on tiny devices; or to do much more with larger devices.

Trends

- Sensors, algorithms and processors together
- ASIC

Aim of our work

TRACKING

- ORB-SLAM (open-source, high-ranking)
- ASIC way, providing comparable performance and accuracy (CPU; FPGA)
- Of course, we should save power cost (within 200mW)
- Currently tracking task

Framework (SoC)

- RISC-V Core(custom design)
- HcveAcc (co-processor)
- Task pipelined
- Maximize the use of bandwidth resources

Details of Architecture

• FAST feature detection

$$S_{p \to x} = \begin{cases} d, I_{p \to x} \leq I_p - t (darker) \\ s, I_p - t \leq I_{p \to x} \leq I_p + t (similar) \\ b, I_p + t \leq I_{p \to x} (brighter) \end{cases}$$

$$V = \max \left(\begin{array}{c} \sum\limits_{x \in S_{bright}} |I_{p \to x} - I_p| - t, \\ \sum\limits_{x \in S_{dark}} |I_p - I_{p \to x}| - t \end{array} \right)$$

Details of Architecture

• Pixel Cache Design

Figure 7: The Window Fusion module example.

Figure 8: The example of Several Window Fusion modules with horizontal data splicing.

Figure 9: The example of two Window Fusion modules with vertical data splicing.

KG Architecture

• KG (Key-point Generation) module design

DG Architecture

• DG (Descriptor Generation) module design

$$\begin{cases} \widetilde{x_{i+1}} = x_i + y_i tan\theta \\ \widetilde{y_{i+1}} = y_i - x_i tan\theta \\ \theta_{i+1} = \theta_i + \theta \end{cases}$$
$$\widetilde{x_{i+1}} = x_i + y_i \times 2^{-i} \\ \widetilde{y_{i+1}} = y_i - x_i \times 2^{-i} \\ \theta_{i+1} = \theta_i + tan^{-1} (2^{-i}) \end{cases}$$

The rBRIEF algorithmCORDIC calculation

TABLE II: The comparison of performance and power results.

Platform	Image Resolution	Frame Latency (ms)	Throughput (MPix/s)	Speedup Ratio	Power (W)
CPU [3]	640*480	32.5	9.5	15.4	47
ARM [3]	640*480	291.6	1.1	133.2	1.574
FPGA [4]	640*480	14.8	20.1	7.3	4.6
eSLAM [3]	640*480	9.1	33.8	4.3	1.936
HcveAcc	752*480	2.3	146.5	N/A	0.181

TABLE I: Result comparisons between FAST-BRIEF and HcveAcc.

Design Name		FAST-BRIEF [5]		HcveAcc	
CMOS Tech.		65nm		28nm	
Components		Detector	Descriptor	Detector	Descriptor
Quantization		N/A	256bits	FAST12	256bits
			(N)		(Y)
Number of PEs		N/A		2	2
Area cost (sq um)	Comb	10146.4	11923.9	2837.6	13345.6
	Seq	9066.3	42154.9	968.1	7175.4
	Total	73291.5		24326.7	
Freq.(GHz)		N/A		1.0	
Power(mW)		1131		50	

- Power consumption much saved
- Area saved up to 66.8%

Fig. 5: (a) The layout design of KG; (b) The layout design of DG.

- ➢ KG, DG, and RISC-V core
- Top-k ranking problem
- The pipelined working mode gives the best results.
- Total runtime results of case1, case2 and case3 are 5ms, 3.7ms and 2.3 ms respectively.

Fig. 6: The runtime comparisons of case1, case2 and case3. The total runtime colored with yellow includes the combined runtime of Detector(KG), Descriptor(DG), and the RISC-V kernel.

Time

Figure 12: Comparison results of different approaches for KITTI EuRoC MH_03_medium.

Fig. 7: The comparison of feature detection with or without NMS module. All of key-points are marked with green color.

- NMS mode can help control the feature size
- One-degree discretization
- ➤ 3X of 12 degrees discretization

Fig. 8: The matching graphs with using different precision of angle calculation.

TABLE III: The comparison of hardware utilization.

Angle Discretization	Max Distance	Total	Matched	Error Rate
20	76	500	149	70.20%
12	60	500	278	44.40%
5	5	500	493	1.40%
1	4	500	498	0.40%

- ORB-SLAM accuracy
- The EuRoC and TUM dataset
- Absolute translation root-mean-square error (RMSE) metric
- The ground truth trajectory and the estimated trajectory
- Results of RMSE are acceptable and the max error can be controlled within 1m (4.9% worst)

Fig. 9: (a) The original ORB-SLAM trajectory of EuRoC V1_02_medium (RMSE = 0.064, max = 0.113(m)); (b) The modified ORB-SLAM trajectory of EuRoC V1_02_medium (RMSE = 0.069, max = 0.498(m)); (c) The original ORB-SLAM trajectory of TUM fr1/room (RMSE = 0.090, max = 0.162(m)); (d) The modified ORB-SLAM trajectory of TUM fr1/room (RMSE = 0.118, max = 0.170(m)).

Thank you!

liumeng2013@ia.ac.cn