

Cissy Yuan (RIVAI) Xing Wang (SYNOPSYS)

AloT – Fast Growing, Fragmented Market

- o **Al**
- Smart Home
- o Smart City
- Security
- Autonomous Driving
- o Social
- Education
- o Manufacture

Customized architectures achieve much better compute efficiency

Fast Evolution of AI Calls for SW HW Co-design

FPU: In-Datacenter Performance Analysis of a Tensor Processing Unit, ISCA'17

Computing Centric TPU Customized ASIC for Tensor Flow 15-30x faster than GPGPU, GPCPU Memory Centric Customized ASIC Computing close to memory 3-10x faster Save wasted computing/memory SW HW Co-design 3-7x energy efficiency

SW HW Co-design can bring best cost-performance

SW HW Co-design on Pygmy, Heterogenous Multicore AI SoC

Vector AI engines have customized RISC-V ISA 64bit multicores boot full Linux with SMP

Compile application to customized ISA. Al applications directly program vector engines.

RISC-V extended ISA enabled full stack SW HW co-design

Co-design Requires Challenging Full Stack Simulation & Debug

Enormous flow effort at functional, performance, power simulation & debug

✤Long Runtime

Boot Linux kernel at block-level takes **24 hours**, **20 times slower** at chip level. **Co-Simulation with precise CPU behavioral model is 1.5 times slower. Hours to days manually** port ASIC RTL to FPGA. **2-6 hours** just to generate bit file.

✤<u>Hard to debug</u>

Difficult to dump out at useful time period.

Hard to reproduce bugs.

Visibility is very low.

Zebu is a powerful weapon to overcome these challenges

ZeBu Supports All High Value Emulation Use Cases

Differentiated ZeBu Technologies drive emulation efficiency

ZeBu Pygmy Emulation Environment

Pygmy RISC-V AI Chip on ZeBu Demonstration

SYNOPSYS[®]

Pygmy Linux Boot Debug Case Study

Pygmy Performance Debug Case Study

© 2019 Synop

With ZEMI3, performance issues can be debugged at higher level more efficiently

Synopsys*

Analyze Power using RTL: Hours instead of Weeks

RTL average power for millions of cycles expands beyond legacy emulation flows for 10,000s of cycles

20khz (18min)*	1 Hr x 150 Grid Jobs*	RTL Power Estimation for Average Power
Dump Waveform for all power essential signals (Registers)	Waveform reconstruction for all signals and generate SAIF	Average power for millions of cycles
*1 Manhattan frame, 2B gates design on ZS4		

SYNOPSYS[®]

- > SW HW co-design brings best cost-performance in fast growing AloT market.
- ZeBu delivered highest efficiency for full stack Functionality Verification, Performance Debug and Power Analysis.
- **RISC-V** extended ISA enabled full stack SW HW co-design flow.

▶软硬件联合开发能获得最好的性价比, Zebu 助力实现最快的全栈迭代,这一切得益于RISC-V

Thank You

We are hiring [©] info@RIVALAI