
Getting the most out of your professional
RISC-V compiler and debugger

Ryan Sheng / 盛磊, ryan.sheng@iar.com, 021-63758658
IAR Systems (China)
2019.11.13

mailto:ryan.sheng@iar.com

Highlight

Meet the demand of quality & time-to-market for your RISC-V project

 Easy code reuse and widest customers base from
IAR Embedded Workbench, the complete IDE toolchain

 Fit the needs of both memory size and necessary performance
by the outstanding C/C++ compiler

 Improve the code quality and find potential issues earlier
by the integrated C-STAT analysis

 Identify low level bugs and provide graphical visibility to all SoC resource
by the powerful debugger

IAR Embedded Workbench
Complete C/C++ compiler and debugger toolchain

Most widely used development tools for embedded applications

User-friendly IDE features and broad ecosystem integration

Industry leading code optimization

technology

Comprehensive debugger

Integrated code

analysis tools

ISO/ANSI C/C++

compliance with

C18 and C++17

Support for 12,000+ devices

Different architecture, One solution
All available 8-,16- and 32-bit MCUs

Cortex-M0

Cortex-M0+

Cortex-M1

Cortex-M3

Cortex-M4

Cortex-M7

Cortex-M23

Cortex-M33

Cortex-R4

Cortex-R5

Cortex-R52

Cortex-R7

Cortex-R8

Cortex-A5

Cortex-A7

Cortex-A8

Cortex-A9

Cortex-A15

ARM11

ARM9

ARM7

SecurCore

8051

MSP430

AVR

AVR32

RX

RL78

RH850

78K

SuperH

V850

R32C

M32C

M16C

R8C

H8

STM8

ColdFire

HCS12

S08

MAXQ

CR16C

SAM8

RISC-V

Object Code

Compiler optimizations

C Source

Parser

Intermediate Code High-Level Optimizer

Code Generator

Target Code
Low-Level

Optimizer

Assembler

Compiler

c.mv a3, sp

c.li a1, 1

lui a0, 0x80002

=

–

15y

x

x = y - 15;
Function

inlining

Dead code

elimination

Loop

unrolling

Peephole

Crosscall

Scheduling

01001000111001101001

Linker

Link time

optimizations

Controlling optimizations

Well-tested
Commercial test suites
 Plum-Hall Validation test

suite
 Perennial EC++VS
 Dinkum C++ Proofer

In-house developed test suite
>500,000 lines of C/C++ test
code run multiple times
 Processor modes
 Memory models
 Optimization levels

Language standards
 ISO/IEC 14882:2015

(C++14, C++17)

 ISO/IEC 9899:2018 (C18)

 ANSI X3.159-1989 (C89)

 IEEE 754 standard for

floating-point arithmetic

Option to

maximize

speed with

no size

constraints

The linker can

remove unused

code

Multiple

optimization

levels for code

size and

execution

speed

Balance between size

and speed by setting

different optimizations

for different parts of the

code

Major features of the

optimizer can be

controlled individually

Multi-file compilation allows

the optimizer to operate on

a larger set of code

Speed, size or both?

Optimization

Common sub-expressions Speed ↑ Size ↓

Loop unrolling Speed ↑ Size ↑

Function inlining Speed ↑ Size ↑

Code motion Speed ↑ Size →

Dead code elimination Speed → Size ↓

Static clustering Speed ↑ Size ↓

Instruction scheduling Speed ↑ Size →

Cross call Speed ↓ Size ↓

Effect

Challenges on optimization

• Size
– Compared to more complex instruction sets, RISC-V have

some challenges especially when it comes to code size

– Arithmetic with higher resolution than the natural data size

yields larger code

– Absence of carry flags and instructions to save and restore

multiple registers are other examples

• Speed
– When it comes to speed, RISC-V is relatively competitive

– More speed optimizations come in future releases

Our initial target will be on reduced code size for small embedded

systems. Our main focus have always been to supply the best

balance of code size and speed on the market.

GCC attributes

• In extended language mode, the IAR C/C++ compiler supports a selection of
commonly used GCC-style attributes

• Use the _ _attribute_ _ ((attribute-list)) syntax for these attributes

• The following attributes are supported in part or in whole

alias aligned always_inline constructor

deprecated noinline noreturn packed

pcs section target transparent_union

unused used volatile weak

Custom instructions

• The .insn directive generates
custom instructions which are
not directly supported by the
assembler

• The .insn directive can be
used to inline assembly code in
programs written in C and C++

• The .insn directive generates
instructions on all RISC-V
instruction formats

.insn directives

.insn r op7, f3, f7, rd, rs1, rs2

.insn r op7, f3, f7, rd, rs1, rs2, rs3

.insn r4 op7, f3, f2, rd, rs1, rs2, rs3

.insn i op7, f3, rd, rs1, expr

.insn i op7, f3, rd, rs1, expr (rs1)

.insn s op7, f3, rd, rs1, expr (rs1)

.insn sb op7, f3, rd, rs1, expr

.insn sb op7, f3, rd, expr(rs1)

.insn b op7, f3, rd, rs1, expr

.insn u op7, f3, rd, expr

.insn uj op2, rd, expr

.insn cr op2, f4, rd, rs1

.insn ci op2, f2, rd, expr

.insn ciw op2, f3, rd’, expr

.insn ca op2, f6, f2, rd’, rs2’

.insn cb op2, f3, rs1’, expr

.insn cj op2, f3, expr

.insn cs op2, f3, rs1’, rs2’, expr* Please refer to the RISC-V ISA specification

sections 2.3 and 12.2 for details on bit-layout

op2, op7
unsigned immediate
2 or 7-bit opcode

fN
unsigned immediate for function code
2-7 bits wide

rd, rsN
register field
integer (x0-x31) or FP (f0-f31)

Rd’, rsN’
compact instruction reg. field
integer (x8-x15) or FP (f8-f15)

expr: immediate expression

Code quality: C-STAT static analysis

CWE (Common Weakness Enumeration): http://cwe.mitre.org

CERT (Computer Emergency Response Team): http://www.cert.org

• Advanced analysis of C/C++ code

• Fully integrated within IAR Embedded

Workbench for RISC-V

• Check compliance with MISRA C:2004,

MISRA C++:2008 and MISRA C:2012

• Include ~250 checks mapping to

hundreds of issues covered by CWE

and CERT C/C++

• Intuitive and easy-to-use settings with

flexible rule selection

• Support for command line execution

• Extensive and detailed documentation

http://cwe.mitre.org/
http://www.cert.org/

Debug & Trace probes
I-jet I-jet Trace (4-bit MIPI20 model) I-jet Trace(16-bit Mictor/MIPI20 model)

JTAG/SWD speed 48 MHz 100 MHz 100 MHz

Download speed (RAM) 1.89 MByte/s 3.73MByte/s 3.73 MByte/s

SWO max. bandwidth ~30 Mbps ~60 Mbps ~60 Mbps

Available trace memory - 64M or 256M bytes 256M or 1G bytes

Trace max. bandwidth - 1.2 Gbps 11.2 Gbps

Max streaming speed 48MByte/s ~380MByte/s ~380MByte/s

Power sampling resolution ~160 µA ~160µA ~160 µA

Power sampling rate 200 ksps 200 ksps 200 ksps

RISC-V debugging
• IAR supports the latest complete RISC-V debug spec, currently v0.13

– Any additional updates will continuously be supported

• Automated discovery of implemented debug features in a MCU or SoC
– Implemented debug features like available HW breakpoints, supported extensions etc. is read on connection

• Interrupt and exception catching
– Configure interrupt and exception catching

– Distinguish between different priority levels and exception types

• Set different types of breakpoints
– Watchpoints, set breakpoints on data

– Set conditional breakpoints

• Single step both on C/C++ and assembler level

• Full low-level access to all registers, memories and resources on RISC-V SoC
– Low level powerful SoC-oriented debugger on roadmap

• Script/macro execution capabilities

Debugger

Dockable

windows and

tab groups

Stack usage

Expressions

Monitoring

Variables

Monitoring
Registers

Code & data

breakpoints

- C-like macro system

- Built-in Simulator

- RTOS awareness

- Trace

Semihosted

Terminal I/O

Source and disassembly level

debugging

More features will come:
Data log, Interrupt log, Function profiler, Code coverage, etc.

Demonstration

USB

Xilinx Artix-7

Arty FPGA Kit

编译/链接/下载/调试

I-jet
JTAG

SiFive

E31 Core

Thanks for your attention!

www.iar.com/riscv

